semPLS: Structural Equation Modeling Using Partial Least Squares

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Armin Monecke, Friedrich Leisch
Journal/Conference Name Journal of Statistical Software
Paper Category
Paper Abstract Structural equation models (SEM) are very popular in many disciplines. The partial least squares (PLS) approach to SEM offers an alternative to covariance-based SEM, which is especially suited for situations when data is not normally distributed. PLS path modelling is referred to as soft-modeling-technique with minimum demands regarding mea- surement scales, sample sizes and residual distributions. The semPLS package provides the capability to estimate PLS path models within the R programming environment. Different setups for the estimation of factor scores can be used. Furthermore it contains modular methods for computation of bootstrap confidence intervals, model parameters and several quality indices. Various plot functions help to evaluate the model. The well known mobile phone dataset from marketing research is used to demonstrate the features of the package.
Date of publication 2012
Code Programming Language R

Copyright Researcher 2022