Sequential Implementation of Monte Carlo Tests with Uniformly Bounded Resampling Risk

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Axel Gandy
Journal/Conference Name Journal of the American Statistical Association
Paper Category
Paper Abstract This paper introduces an open-ended sequential algorithm for computing the p-value of a test using Monte Carlo simulation. It guarantees that the resampling risk, the probability of a different decision than the one based on the theoretical p-value, is uniformly bounded by an arbitrarily small constant. Previously suggested sequential or nonsequential algorithms, using a bounded sample size, do not have this property. Although the algorithm is open-ended, the expected number of steps is finite, except when the p-value is on the threshold between rejecting and not rejecting. The algorithm is suitable as standard for implementing tests that require (re)sampling. It can also be used in other situations: to check whether a test is conservative, iteratively to implement double bootstrap tests, and to determine the sample size required for a certain power. An R-package implementing the sequential algorithm is available online.
Date of publication 2009
Code Programming Language R
Comment

Copyright Researcher 2021