SimInf: An R Package for Data-Driven Stochastic Disease Spread Simulations
View Researcher's Other CodesDisclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).
Authors | Stefan Widgren, Pavol Bauer, Robin Eriksson, Stefan Engblom |
Journal/Conference Name | arXiv preprint arXiv:1605.01421 [q-bio.PE] |
Paper Category | Other |
Paper Abstract | We present the R package SimInf which provides an efficient and very flexible framework to conduct data-driven epidemiological modeling in realistic large scale disease spread simulations. The framework integrates infection dynamics in subpopulations as continuous-time Markov chains using the Gillespie stochastic simulation algorithm and incorporates available data such as births, deaths and movements as scheduled events at predefined time-points. Using C code for the numerical solvers and OpenMP to divide work over multiple processors ensures high performance when simulating a sample outcome. One of our design goal was to make SimInf extendable and enable usage of the numerical solvers from other R extension packages in order to facilitate complex epidemiological research. In this paper, we provide a technical description of the framework and demonstrate its use on some basic examples. We also discuss how to specify and extend the framework with user-defined models. |
Date of publication | 2016 |
Code Programming Language | R |
Comment |