Single-exposure absorption imaging of ultracold atoms using deep learning

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Constantine Shkedrov, Anastasiya Vainbaum, Yanay Florshaim, Gal Ness, Yoav Sagi
Journal/Conference Name arXiv preprint
Paper Category
Paper Abstract Absorption imaging is the most common probing technique in experiments with ultracold atoms. The standard procedure involves the division of two frames acquired at successive exposures, one with the atomic absorption signal and one without. A well-known problem is the presence of residual structured noise in the final image, due to small differences between the imaging light in the two exposures. Here we solve this problem by performing absorption imaging with only a single exposure, where instead of a second exposure the reference frame is generated by an unsupervised image-completion autoencoder neural network. The network is trained on images without absorption signal such that it can infer the noise overlaying the atomic signal based only on the information in the region encircling the signal. We demonstrate our approach on data captured with a quantum degenerate Fermi gas. The average residual noise in the resulting images is below that of the standard double-shot technique. Our method simplifies the experimental sequence, reduces the hardware requirements, and can improve the accuracy of extracted physical observables. The trained network and its generating scripts are available as an open-source repository (http//
Date of publication 2020
Code Programming Language Python

Copyright Researcher 2022