Single Image Super-Resolution with Dilated Convolution based Multi-Scale Information Learning Inception Module

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Debin Zhao, Feng Jiang, Wuzhen Shi
Journal/Conference Name Proceedings - International Conference on Image Processing, ICIP
Paper Category
Paper Abstract Traditional works have shown that patches in a natural image tend to redundantly recur many times inside the image, both within the same scale, as well as across different scales. Make full use of these multi-scale information can improve the image restoration performance. However, the current proposed deep learning based restoration methods do not take the multi-scale information into account. In this paper, we propose a dilated convolution based inception module to learn multi-scale information and design a deep network for single image super-resolution. Different dilated convolution learns different scale feature, then the inception module concatenates all these features to fuse multi-scale information. In order to increase the reception field of our network to catch more contextual information, we cascade multiple inception modules to constitute a deep network to conduct single image super-resolution. With the novel dilated convolution based inception module, the proposed end-to-end single image super-resolution network can take advantage of multi-scale information to improve image super-resolution performance. Experimental results show that our proposed method outperforms many state-of-the-art single image super-resolution methods.
Date of publication 2017
Code Programming Language Multiple

Copyright Researcher 2022