Smoothing Population Size Estimates for Time-Stratified Mark-Recapture Experiments Using Bayesian P-Splines

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Simon J. Bonner, Carl J. Schwarz
Journal/Conference Name Canadian Journal of Fisheries and Aquatic Sciences
Paper Category
Paper Abstract Petersen-type mark-recapture experiments are often used to estimate the number of fish or other animals in a population moving along a set migration route. A first sample of individuals is captured at one location, marked, and returned to the population. A second sample is then captured farther along the route, and inferences are derived from the numbers of marked and unmarked fish found in this second sample. Data from such experiments are often stratified by time (day or week) to allow for possible changes in the capture probabilities, and previous methods of analysis fail to take advantage of the temporal relationships in the stratified data. We present a Bayesian, semiparametric method that explicitly models the expected number of fish in each stratum as a smooth function of time. Results from the analysis of historical data from the migration of young Atlantic salmon (Salmo salar) along the Conne River, Newfoundland, and from a simulation study indicate that the new method provides more precise estimates of the population size and more accurate estimates of uncertainty than the currently available methods.
Date of publication 2011
Code Programming Language R
Comment

Copyright Researcher 2022