SoccerDB: A Large-Scale Database for Comprehensive Video Understanding

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Leilei Chen, Kaixu Cui, Yudong Jiang, Canjin Wang, Changliang Xu
Journal/Conference Name arXiv preprint
Paper Category
Paper Abstract Soccer videos can serve as a perfect research object for video understanding because soccer games are played under well-defined rules while complex and intriguing enough for researchers to study. In this paper, we propose a new soccer video database named SoccerDB, comprising 171,191 video segments from 346 high-quality soccer games. The database contains 702,096 bounding boxes, 37,709 essential event labels with time boundary and 17,115 highlight annotations for object detection, action recognition, temporal action localization, and highlight detection tasks. To our knowledge, it is the largest database for comprehensive sports video understanding on various aspects. We further survey a collection of strong baselines on SoccerDB, which have demonstrated state-of-the-art performances on independent tasks. Our evaluation suggests that we can benefit significantly when jointly considering the inner correlations among those tasks. We believe the release of SoccerDB will tremendously advance researches around comprehensive video understanding. {\itshape Our dataset and code published on https//github.com/newsdata/SoccerDB.}
Date of publication 2019
Code Programming Language Python
Comment

Copyright Researcher 2022