Soil Property and Class Maps of the Conterminous US at 100 meter Spatial Resolution based on a Compilation of National Soil Point Observations and Machine Learning

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Amanda Ramcharan, Tomislav Hengl, Travis Nauman, Colby Brungard, Sharon Waltman, Skye Wills, James Thompson
Journal/Conference Name Soil Science Society of America Journal
Paper Category
Paper Abstract With growing concern for the depletion of soil resources, conventional soil data must be updated to support spatially explicit human-landscape models. Three US soil point datasetswere combined with a stack of over 200 environmental datasets to generate complete coverage gridded predictions at 100 m spatial resolution of soil properties (percent organic C, total N, bulk density, pH, and percent sand and clay) and US soil taxonomic classes (291 great groups and 78 modified particle size classes) for the conterminous US. Models were built using parallelized random forest and gradient boosting algorithms. Soil property predictions were generated at seven standard soil depths (0, 5, 15, 30, 60, 100 and 200 cm). Prediction probability maps for US soil taxonomic classifications were also generated. Model validation results indicate an out-of-bag classification accuracy of 60 percent for great groups, and 66 percent for modified particle size classes; for soil properties cross-validated R-square ranged from 62 percent for total N to 87 percent for pH. Nine independent validation datasets were used to assess prediction accuracies for soil class models and results ranged between 24-58 percent and 24-93 percent for great group and modified particle size class prediction accuracies, respectively. The hybrid (SoilGrids+) modeling system that incorporates remote sensing data, local predictions of soil properties, conventional soil polygon maps, and machine learning opens the possibility for updating conventional soil survey data with machine learning technology to make soil information easier to integrate with spatially explicit models, compared to multi-component map units.
Date of publication 2018
Code Programming Language R
Comment

Copyright Researcher 2021