Solving Arithmetic Word Problems Automatically Using Transformer and Unambiguous Representations

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Jugal Kalita, Kaden Griffith
Journal/Conference Name arXiv preprint
Paper Category
Paper Abstract Constructing accurate and automatic solvers of math word problems has proven to be quite challenging. Prior attempts using machine learning have been trained on corpora specific to math word problems to produce arithmetic expressions in infix notation before answer computation. We find that custom-built neural networks have struggled to generalize well. This paper outlines the use of Transformer networks trained to translate math word problems to equivalent arithmetic expressions in infix, prefix, and postfix notations. In addition to training directly on domain-specific corpora, we use an approach that pre-trains on a general text corpus to provide foundational language abilities to explore if it improves performance. We compare results produced by a large number of neural configurations and find that most configurations outperform previously reported approaches on three of four datasets with significant increases in accuracy of over 20 percentage points. The best neural approaches boost accuracy by almost 10% on average when compared to the previous state of the art.
Date of publication 2019
Code Programming Language Python

Copyright Researcher 2022