SparseNet: Coordinate Descent With Nonconvex Penalties

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Rahul Mazumder, Jerome H. Friedman, Trevor J. Hastie
Journal/Conference Name Journal of the American Statistical Association
Paper Category
Paper Abstract We address the problem of sparse selection in linear models. A number of nonconvex penalties have been proposed in the literature for this purpose, along with a variety of convex-relaxation algorithms for finding good solutions. In this article we pursue a coordinate-descent approach for optimization, and study its convergence properties. We characterize the properties of penalties suitable for this approach, study their corresponding threshold functions, and describe a df-standardizing reparametrization that assists our pathwise algorithm. The MC+ penalty is ideally suited to this task, and we use it to demonstrate the performance of our algorithm. Certain technical derivations and experiments related to this article are included in the Supplementary Materials section.
Date of publication 2011
Code Programming Language R
Comment

Copyright Researcher 2021