Spectral Embedded Clustering: A  Framework for In-Sample and Out-of-Sample Spectral Clustering

View Researcher II's Other Codes

Disclaimer: “The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).”

Please contact us in case of a broken link from here

Authors Feiping Nie, Zinan Zeng, Ivor Tsang, Dong Xu, Changshui Zhang
Journal/Conference Name IEEE Transactions on Neural Networks (TNN)
Paper Category
Paper Abstract Spectral clustering (SC) methods have been successfully applied to many real-world applications. The success of these SC methods is largely based on the manifold assumption, namely, that two nearby data points in the high-density region of a low-dimensional data manifold have the same cluster label. However, such an assumption might not always hold on high-dimensional data. When the data do not exhibit a clear low-dimensional manifold structure (e.g., high-dimensional and sparse data), the clustering performance of SC will be degraded and become even worse than K -means clustering. In this paper, motivated by the observation that the true cluster assignment matrix for high-dimensional data can be always embedded in a linear space spanned by the data, we propose the spectral embedded clustering (SEC) framework, in which a linearity regularization is explicitly added into the objective function of SC methods. More importantly, the proposed SEC framework can naturally deal with out-of-sample data. We also present a new Laplacian matrix constructed from a local regression of each pattern and incorporate it into our SEC framework to capture both local and global discriminative information for clustering. Comprehensive experiments on eight real-world high-dimensional datasets demonstrate the effectiveness and advantages of our SEC framework over existing SC methods and K-means-based clustering methods. Our SEC framework significantly outperforms SC using the Nyström algorithm on unseen data.
Date of publication 2011
Code Programming Language MATLAB
Comment

Copyright Researcher II 2021