spikeSlabGAM: Bayesian Variable Selection, Model Choice and Regularization for Generalized Additive Mixed Models in R

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Fabian Scheipl
Journal/Conference Name Journal of Statistical Software
Paper Category
Paper Abstract The R package spikeSlabGAM implements Bayesian variable selection, model choice, and regularized estimation in (geo-)additive mixed models for Gaussian, binomial, and Poisson responses. Its purpose is to (1) choose an appropriate subset of potential covariates and their interactions, (2) to determine whether linear or more flexible functional forms are required to model the effects of the respective covariates, and (3) to estimate their shapes. Selection and regularization of the model terms is based on a novel spike-and-slab-type prior on coefficient groups associated with parametric and semi-parametric effects.
Date of publication 2011
Code Programming Language R

Copyright Researcher 2021