SPINE: SParse Interpretable Neural Embeddings
View Researcher's Other CodesDisclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).
Please contact us in case of a broken link from here
Authors | Danish Pruthi, Eduard Hovy, Harsh Jhamtani, Anant Subramanian, Taylor Berg-Kirkpatrick |
Journal/Conference Name | 32nd AAAI Conference on Artificial Intelligence, AAAI 2018 |
Paper Category | Artificial Intelligence |
Paper Abstract | Prediction without justification has limited utility. Much of the success of neural models can be attributed to their ability to learn rich, dense and expressive representations. While these representations capture the underlying complexity and latent trends in the data, they are far from being interpretable. We propose a novel variant of denoising k-sparse autoencoders that generates highly efficient and interpretable distributed word representations (word embeddings), beginning with existing word representations from state-of-the-art methods like GloVe and word2vec. Through large scale human evaluation, we report that our resulting word embedddings are much more interpretable than the original GloVe and word2vec embeddings. Moreover, our embeddings outperform existing popular word embeddings on a diverse suite of benchmark downstream tasks. |
Date of publication | 2017 |
Code Programming Language | Python |
Comment |