SpiralNet++: A Fast and Highly Efficient Mesh Convolution Operator

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Stefanos Zafeiriou, Shunwang Gong, Lei Chen, Michael Bronstein
Journal/Conference Name arXiv preprint
Paper Category
Paper Abstract Intrinsic graph convolution operators with differentiable kernel functions play a crucial role in analyzing 3D shape meshes. In this paper, we present a fast and efficient intrinsic mesh convolution operator that does not rely on the intricate design of kernel function. We explicitly formulate the order of aggregating neighboring vertices, instead of learning weights between nodes, and then a fully connected layer follows to fuse local geometric structure information with vertex features. We provide extensive evidence showing that models based on this convolution operator are easier to train, and can efficiently learn invariant shape features. Specifically, we evaluate our method on three different types of tasks of dense shape correspondence, 3D facial expression classification, and 3D shape reconstruction, and show that it significantly outperforms state-of-the-art approaches while being significantly faster, without relying on shape descriptors. Our source code is available on GitHub.
Date of publication 2019
Code Programming Language Python

Copyright Researcher 2022