Structural Regularities in Text-based Entity Vector Spaces

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Christophe Van Gysel, Evangelos Kanoulas, Maarten de Rijke
Journal/Conference Name ICTIR 2017 - Proceedings of the 2017 ACM SIGIR International Conference on the Theory of Information Retrieval
Paper Category
Paper Abstract Entity retrieval is the task of finding entities such as people or products in response to a query, based solely on the textual documents they are associated with. Recent semantic entity retrieval algorithms represent queries and experts in finite-dimensional vector spaces, where both are constructed from text sequences. We investigate entity vector spaces and the degree to which they capture structural regularities. Such vector spaces are constructed in an unsupervised manner without explicit information about structural aspects. For concreteness, we address these questions for a specific type of entity experts in the context of expert finding. We discover how clusterings of experts correspond to committees in organizations, the ability of expert representations to encode the co-author graph, and the degree to which they encode academic rank. We compare latent, continuous representations created using methods based on distributional semantics (LSI), topic models (LDA) and neural networks (word2vec, doc2vec, SERT). Vector spaces created using neural methods, such as doc2vec and SERT, systematically perform better at clustering than LSI, LDA and word2vec. When it comes to encoding entity relations, SERT performs best.
Date of publication 2017
Code Programming Language Python
Comment

Copyright Researcher 2022