Structure Learning in Random Fields for Heart Motion Abnormality Detection

View Researcher II's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Mark W. Schmidt, Kevin P. Murphy, Glenn Fung, RĂ³mer Rosales
Journal/Conference Name Computer Vision and Pattern Recognition
Paper Category
Paper Abstract Coronary Heart Disease can be diagnosed by assessing the regional motion of the heart walls in ultrasound images of the left ventricle. Even for experts, ultrasound images are difficult to interpret leading to high intra-observer variability. Previous work indicates that in order to approach this problem, the interactions between the different heart regions and their overall influence on the clinical condition of the heart need to be considered. To do this, we propose a method for jointly learning the structure and parameters of conditional random fields, formulating these tasks as a convex optimization problem. We consider block-L1 regularization for each set of features associated with an edge, and formalize an efficient projection method to find the globally optimal penalized maximum likelihood solution. We perform extensive numerical experiments comparing the presented method with related methods that approach the structure learning problem differently. We verify the robustness of our method on echocardiograms collected in routine clinical practice at one hospital.
Date of publication 2008
Code Programming Language MATLAB
Comment

Copyright Researcher II 2021