Structured compressive sensing based spatio-temporal joint channel estimation for FDD massive MIMO

View Researcher II's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Zhen Gao, Linglong Dai, Wei Dai, Byonghyo Shim, Zhaocheng Wang
Journal/Conference Name IEEE Transactions on Communications
Paper Category
Paper Abstract Massive MIMO is a promising technique for future 5G communications due to its high spectrum and energy efficiency. To realize its potential performance gain, accurate channel estimation is essential. However, due to massive number of antennas at the base station (BS), the pilot overhead required by conventional channel estimation schemes will be unaffordable, especially for frequency division duplex (FDD) massive MIMO. To overcome this problem, we propose a structured compressive sensing (SCS)-based spatio-temporal joint channel estimation scheme to reduce the required pilot overhead, whereby the spatio-temporal common sparsity of delay-domain MIMO channels is leveraged. Particularly, we first propose the nonorthogonal pilots at the BS under the framework of CS theory to reduce the required pilot overhead. Then, an adaptive structured subspace pursuit (ASSP) algorithm at the user is proposed to jointly estimate channels associated with multiple OFDM symbols from the limited number of pilots, whereby the spatio-temporal common sparsity of MIMO channels is exploited to improve the channel estimation accuracy. Moreover, by exploiting the temporal channel correlation, we propose a space-time adaptive pilot scheme to further reduce the pilot overhead. Additionally, we discuss the proposed channel estimation scheme in multicell scenario. Simulation results demonstrate that the proposed scheme can accurately estimate channels with the reduced pilot overhead, and it is capable of approaching the optimal oracle least squares estimator.
Date of publication 2016
Code Programming Language MATLAB
Comment

Copyright Researcher II 2021