Structured compressive sensing based superimposed pilot design in downlink large-scale MIMO systems

View Researcher II's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Zhen Gao, Linglong Dai, Zhaocheng Wang
Journal/Conference Name ArXiv
Paper Category
Paper Abstract Large-scale multiple-input multiple-output (MIMO) with high spectrum and energy efficiency is a very promising key technology for future 5G wireless communications. For large-scale MIMO systems, accurate channel state information (CSI) acquisition is a challenging problem, especially when each user has to distinguish and estimate numerous channels coming from a large number of transmit antennas in the downlink. Unlike the conventional orthogonal pilots whose pilot overhead prohibitively increases with the number of transmit antennas, a spectrum-efficient superimposed pilot design for downlink largescale MIMO scenarios is proposed, where frequency-domain pilots of different transmit antennas occupy completely the same subcarriers in the frequency domain. Meanwhile, spatial–temporal common sparsity of large-scale MIMO channels motivates us to exploit the emerging theory of structured compressive sensing (CS) for reliable MIMO channel estimation, which is realised by the proposed structured subspace pursuit (SSP) algorithm to simultaneously recover multiple channels with low pilot overhead. Simulation results demonstrate that the proposed scheme performs well and can approach the performance bound.
Date of publication 2014
Code Programming Language MATLAB
Comment

Copyright Researcher II 2021