Subspace Tracking from Missing and Outlier Corrupted Data

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Praneeth Narayanamurthy, Vahid Daneshpajooh, N. Vaswani
Journal/Conference Name I
Paper Category
Paper Abstract We study the problem of subspace tracking in the presence of missing data (ST-miss). In recent work, we studied a related problem called robust ST. In this work, we show that a simple modification of our robust ST solution also provably solves ST-miss and robust ST-miss. To our knowledge, our result is the first `complete' guarantee for ST-miss. This means that we can prove that under assumptions on only the algorithm inputs, the output subspace estimates are close to the true data subspaces at all times. Our guarantees hold under mild and easily interpretable assumptions, and allow the underlying subspace to change with time in a piecewise constant fashion. In contrast, all existing guarantees for ST are partial results and assume a fixed unknown subspace. Extensive numerical experiments are shown to back up our theoretical claims. Finally, our solution can be interpreted as a provably correct mini-batch and memory-efficient solution to low-rank Matrix Completion (MC).
Date of publication 2019
Code Programming Language MATLAB
Comment

Copyright Researcher 2022