Supervised Learning on Relational Databases with Graph Neural Networks

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Milan Cvitkovic
Journal/Conference Name arXiv preprint
Paper Category
Paper Abstract The majority of data scientists and machine learning practitioners use relational data in their work [State of ML and Data Science 2017, Kaggle, Inc.]. But training machine learning models on data stored in relational databases requires significant data extraction and feature engineering efforts. These efforts are not only costly, but they also destroy potentially important relational structure in the data. We introduce a method that uses Graph Neural Networks to overcome these challenges. Our proposed method outperforms state-of-the-art automatic feature engineering methods on two out of three datasets.
Date of publication 2020
Code Programming Language Python

Copyright Researcher 2022