Tensor Completion for Weakly-dependent Data on Graph for Metro Passenger Flow Prediction

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Nurettin Dorukhan Sergin, Hao Yan, Chen Zhang, Fugee Tsung, Ziyue Li
Journal/Conference Name arXiv preprint
Paper Category
Paper Abstract Low-rank tensor decomposition and completion have attracted significant interest from academia given the ubiquity of tensor data. However, the low-rank structure is a global property, which will not be fulfilled when the data presents complex and weak dependencies given specific graph structures. One particular application that motivates this study is the spatiotemporal data analysis. As shown in the preliminary study, weakly dependencies can worsen the low-rank tensor completion performance. In this paper, we propose a novel low-rank CANDECOMP / PARAFAC (CP) tensor decomposition and completion framework by introducing the $L_{1}$-norm penalty and Graph Laplacian penalty to model the weakly dependency on graph. We further propose an efficient optimization algorithm based on the Block Coordinate Descent for efficient estimation. A case study based on the metro passenger flow data in Hong Kong is conducted to demonstrate improved performance over the regular tensor completion methods.
Date of publication 2019
Code Programming Language Python

Copyright Researcher 2022