Testing environmental and genetic effects in the presence of spatial autocorrelation

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Franc╠žois Rousset, Jean-Baptiste Ferdy
Journal/Conference Name Ecography
Paper Category
Paper Abstract Spatial autocorrelation is a well-recognized concern for observational data in general, and more specifically for spatial data in ecology. Generalized linear mixed models (GLMMs) with spatially autocorrelated random effects are a potential general framework for handling these spatial correlations. However, as the result of statistical and practical issues, such GLMMs have been fitted through the undocumented use of procedures based on penalized quasi-likelihood approximations (PQL), and under restrictive models of spatial correlation. Alternatively, they are often neglected in favor of simpler but more questionable approaches. In this work we aim to provide practical and validated means of inference under spatial GLMMs, that overcome these limitations. For this purpose, a new software is developed to fit spatial GLMMs. We use it to assess the performance of likelihood ratio tests for fixed effects under spatial autocorrelation, based on Laplace or PQL approximations of the likelihood. Expectedly, the Laplace approximation performs generally slightly better, although a variant of PQL was better in the binary case. We show that a previous implementation of PQL methods in the R language, glmmPQL, is not appropriate for such applications. Finally, we illustrate the efficiency of a bootstrap procedure for correcting the small sample bias of the tests, which applies also to non-spatial models.
Date of publication 2014
Code Programming Language R

Copyright Researcher 2022