The Balance-Sample Size Frontier in Matching Methods for Causal Inference

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Gary King, Christopher Lucas, Richard A. Nielsen
Journal/Conference Name AMERICAN JOURNAL OF POLITICAL SCIENCE
Paper Category
Paper Abstract We propose a simplified approach to matching for causal inference that simultaneously optimizes balance (similarity between the treated and control groups) and matched sample size. Existing approaches either fix the matched sample size and maximize balance or fix balance and maximize sample size, leaving analysts to settle for suboptimal solutions or attempt manual optimization by iteratively tweaking their matching method and rechecking balance. To jointly maximize balance and sample size, we introduce the matching frontier, the set of matching solutions with maximum possible balance for each sample size. Rather than iterating, researchers can choose matching solutions from the frontier for analysis in one step. We derive fast algorithms that calculate the matching frontier for several commonly used balance metrics. We demonstrate this approach with analyses of the effect of sex on judging and job training programs that show how the methods we introduce can extract new knowledge from existing data sets.
Date of publication 2016
Code Programming Language R
Comment

Copyright Researcher 2022