The Explanation Game: Explaining Machine Learning Models Using Shapley Values

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Luke Merrick, Ankur Taly
Journal/Conference Name Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Paper Category
Paper Abstract A number of techniques have been proposed to explain a machine learning model's prediction by attributing it to the corresponding input features. Popular among these are techniques that apply the Shapley value method from cooperative game theory. While existing papers focus on the axiomatic motivation of Shapley values, and efficient techniques for computing them, they offer little justification for the game formulations used, and do not address the uncertainty implicit in their methods' outputs. For instance, the popular SHAP algorithm's formulation may give substantial attributions to features that play no role in the model. In this work, we illustrate how subtle differences in the underlying game formulations of existing methods can cause large differences in the attributions for a prediction. We then present a general game formulation that unifies existing methods, and enables straightforward confidence intervals on their attributions. Furthermore, it allows us to interpret the attributions as contrastive explanations of an input relative to a distribution of reference inputs. We tie this idea to classic research in cognitive psychology on contrastive explanations, and propose a conceptual framework for generating and interpreting explanations for ML models, called formulate, approximate, explain (FAE). We apply this framework to explain black-box models trained on two UCI datasets and a Lending Club dataset.
Date of publication 2019
Code Programming Language Jupyter Notebook
Comment

Copyright Researcher 2022