The Weighted Kendall and High-order Kernels for Permutations
View Researcher's Other CodesDisclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).
Please contact us in case of a broken link from here
Authors | Jean-Philippe Vert, Yunlong Jiao |
Journal/Conference Name | ICML 2018 7 |
Paper Category | Artificial Intelligence |
Paper Abstract | We propose new positive definite kernels for permutations. First we introduce a weighted version of the Kendall kernel, which allows to weight unequally the contributions of different item pairs in the permutations depending on their ranks. Like the Kendall kernel, we show that the weighted version is invariant to relabeling of items and can be computed efficiently in $O(n \ln(n))$ operations, where $n$ is the number of items in the permutation. Second, we propose a supervised approach to learn the weights by jointly optimizing them with the function estimated by a kernel machine. Third, while the Kendall kernel considers pairwise comparison between items, we extend it by considering higher-order comparisons among tuples of items and show that the supervised approach of learning the weights can be systematically generalized to higher-order permutation kernels. |
Date of publication | 2018 |
Code Programming Language | Multiple |
Comment |