Timescales of influenza A/H3N2 antibody dynamics

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Adam J. Kucharski, Justin Lessler, Derek A. T. Cummings, Steven Riley
Journal/Conference Name PLoS Biology
Paper Category
Paper Abstract Human immunity influences the evolution and impact of influenza strains. Because individuals are infected with multiple influenza strains during their lifetime, and each virus can generate a cross-reactive antibody response, it is challenging to quantify the processes that shape observed immune responses or to reliably detect recent infection from serological samples. Using a Bayesian model of antibody dynamics at multiple timescales, we explain complex cross-reactive antibody landscapes by inferring participants’ histories of infection with serological data from cross-sectional and longitudinal studies of influenza A/H3N2 in southern China and Vietnam. We find that individual-level influenza antibody profiles can be explained by a short-lived, broadly cross-reactive response that decays within a year to leave a smaller long-term response acting against a narrower range of strains. We also demonstrate that accounting for dynamic immune responses alongside infection history can provide a more accurate alternative to traditional definitions of seroconversion for the estimation of infection attack rates. Our work provides a general model for quantifying aspects of influenza immunity acting at multiple timescales based on contemporary serological data and suggests a two-armed immune response to influenza infection consistent with competitive dynamics between B cell populations. This approach to analysing multiple timescales for antigenic responses could also be applied to other multistrain pathogens such as dengue and related flaviviruses.
Date of publication 2018
Code Programming Language R

Copyright Researcher 2022