Top-down Tree Long Short-Term Memory Networks

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Mirella Lapata, Xingxing Zhang, Liang Lu
Journal/Conference Name NAACL 2016 6
Paper Category
Paper Abstract Long Short-Term Memory (LSTM) networks, a type of recurrent neural network with a more complex computational unit, have been successfully applied to a variety of sequence modeling tasks. In this paper we develop Tree Long Short-Term Memory (TreeLSTM), a neural network model based on LSTM, which is designed to predict a tree rather than a linear sequence. TreeLSTM defines the probability of a sentence by estimating the generation probability of its dependency tree. At each time step, a node is generated based on the representation of the generated sub-tree. We further enhance the modeling power of TreeLSTM by explicitly representing the correlations between left and right dependents. Application of our model to the MSR sentence completion challenge achieves results beyond the current state of the art. We also report results on dependency parsing reranking achieving competitive performance.
Date of publication 2015
Code Programming Language Lua
Comment

Copyright Researcher 2021