Towards K-means-friendly Spaces: Simultaneous Deep Learning and Clustering

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Download
Authors Nicholas D. Sidiropoulos, Mingyi Hong, Bo Yang, Xiao Fu
Journal/Conference Name ICML 2017 8
Paper Category
Paper Abstract Most learning approaches treat dimensionality reduction (DR) and clustering separately (i.e., sequentially), but recent research has shown that optimizing the two tasks jointly can substantially improve the performance of both. The premise behind the latter genre is that the data samples are obtained via linear transformation of latent representations that are easy to cluster; but in practice, the transformation from the latent space to the data can be more complicated. In this work, we assume that this transformation is an unknown and possibly nonlinear function. To recover the `clustering-friendly' latent representations and to better cluster the data, we propose a joint DR and K-means clustering approach in which DR is accomplished via learning a deep neural network (DNN). The motivation is to keep the advantages of jointly optimizing the two tasks, while exploiting the deep neural network's ability to approximate any nonlinear function. This way, the proposed approach can work well for a broad class of generative models. Towards this end, we carefully design the DNN structure and the associated joint optimization criterion, and propose an effective and scalable algorithm to handle the formulated optimization problem. Experiments using different real datasets are employed to showcase the effectiveness of the proposed approach.
Date of publication 2016
Code Programming Language Multiple
Comment

Copyright Researcher 2022