Towards Lightweight Lane Detection by Optimizing Spatial Embedding

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Jaegul Choo, Seokwoo Jung, Sungha Choi, Mohammad Azam Khan
Journal/Conference Name arXiv.org 2020 8
Paper Category
Paper Abstract A number of lane detection methods depend on a proposal-free instance segmentation because of its adaptability to flexible object shape, occlusion, and real-time application. This paper addresses the problem that pixel embedding in proposal-free instance segmentation based lane detection is difficult to optimize. A translation invariance of convolution, which is one of the supposed strengths, causes challenges in optimizing pixel embedding. In this work, we propose a lane detection method based on proposal-free instance segmentation, directly optimizing spatial embedding of pixels using image coordinate. Our proposed method allows the post-processing step for center localization and optimizes clustering in an end-to-end manner. The proposed method enables real-time lane detection through the simplicity of post-processing and the adoption of a lightweight backbone. Our proposed method demonstrates competitive performance on public lane detection datasets.
Date of publication 2020
Code Programming Language Unspecified
Comment

Copyright Researcher 2022