TuckER: Tensor Factorization for Knowledge Graph Completion

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Timothy M. Hospedales, Ivana Balažević, Carl Allen
Journal/Conference Name IJCNLP 2019 11
Paper Category
Paper Abstract Knowledge graphs are structured representations of real world facts. However, they typically contain only a small subset of all possible facts. Link prediction is a task of inferring missing facts based on existing ones. We propose TuckER, a relatively straightforward but powerful linear model based on Tucker decomposition of the binary tensor representation of knowledge graph triples. TuckER outperforms previous state-of-the-art models across standard link prediction datasets, acting as a strong baseline for more elaborate models. We show that TuckER is a fully expressive model, derive sufficient bounds on its embedding dimensionalities and demonstrate that several previously introduced linear models can be viewed as special cases of TuckER.
Date of publication 2019
Code Programming Language Multiple

Copyright Researcher 2022