Unbiased Recursive Partitioning: A Conditional Inference Framework

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Torsten Hothorn, Kurt Hornik, Achim Zeileis
Journal/Conference Name Journal of Computational and Graphical Statistics
Paper Category
Paper Abstract Recursive binary partitioning is a popular tool for regression analysis. Two fundamental problems of exhaustive search procedures usually applied to fit such models have been known for a long time: overfitting and a selection bias towards covariates with many possible splits or missing values. While pruning procedures are able to solve the overfitting problem, the variable selection bias still seriously affects the interpretability of tree-structured regression models. For some special cases unbiased procedures have been suggested, however lacking a common theoretical foundation. We propose a unified framework for recursive partitioning which embeds tree-structured regression models into a well defined theory of conditional inference procedures. Stopping criteria based on multiple test procedures are implemented and it is shown that the predictive performance of the resulting trees is as good as the performance of established exhaustive search procedures. It turns out that the partitions and therefore the...
Date of publication 2006
Code Programming Language R

Copyright Researcher 2022