Understanding the Intrinsic Robustness of Image Distributions using Conditional Generative Models

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Xiao Zhang, Quanquan Gu, Jinghui Chen, David Evans
Journal/Conference Name arXiv preprint
Paper Category
Paper Abstract Starting with Gilmer et al. (2018), several works have demonstrated the inevitability of adversarial examples based on different assumptions about the underlying input probability space. It remains unclear, however, whether these results apply to natural image distributions. In this work, we assume the underlying data distribution is captured by some conditional generative model, and prove intrinsic robustness bounds for a general class of classifiers, which solves an open problem in Fawzi et al. (2018). Building upon the state-of-the-art conditional generative models, we study the intrinsic robustness of two common image benchmarks under $\ell_2$ perturbations, and show the existence of a large gap between the robustness limits implied by our theory and the adversarial robustness achieved by current state-of-the-art robust models. Code for all our experiments is available at https//github.com/xiaozhanguva/Intrinsic-Rob.
Date of publication 2020
Code Programming Language Python
Comment

Copyright Researcher 2022