unmarked: An R Package for Fitting Hierarchical Models of Wildlife Occurrence and Abundance

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Ian J. Fiske, Richard B. Chandler
Journal/Conference Name Journal of Statistical Software
Paper Category
Paper Abstract Ecological research uses data collection techniques that are prone to substantial and unique types of measurement error to address scientific questions about species abundance and distribution. These data collection schemes include a number of survey methods in which unmarked individuals are counted, or determined to be present, at spatially- referenced sites. Examples include site occupancy sampling, repeated counts, distance sampling, removal sampling, and double observer sampling. To appropriately analyze these data, hierarchical models have been developed to separately model explanatory variables of both a latent abundance or occurrence process and a conditional detection process. Because these models have a straightforward interpretation paralleling mechanisms under which the data arose, they have recently gained immense popularity. The common hierarchical structure of these models is well-suited for a unified modeling interface. The R package unmarked provides such a unified modeling framework, including tools for data exploration, model fitting, model criticism, post-hoc analysis, and model comparison.
Date of publication 2011
Code Programming Language R

Copyright Researcher 2022