Unsupervised Visual Domain Adaptation: A Deep Max-Margin Gaussian Process Approach

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Pritish Sahu, Behnam Gholami, Vladimir Pavlovic, Minyoung Kim
Journal/Conference Name CVPR 2019 6
Paper Category
Paper Abstract In unsupervised domain adaptation, it is widely known that the target domain error can be provably reduced by having a shared input representation that makes the source and target domains indistinguishable from each other. Very recently it has been studied that not just matching the marginal input distributions, but the alignment of output (class) distributions is also critical. The latter can be achieved by minimizing the maximum discrepancy of predictors (classifiers). In this paper, we adopt this principle, but propose a more systematic and effective way to achieve hypothesis consistency via Gaussian processes (GP). The GP allows us to define/induce a hypothesis space of the classifiers from the posterior distribution of the latent random functions, turning the learning into a simple large-margin posterior separation problem, far easier to solve than previous approaches based on adversarial minimax optimization. We formulate a learning objective that effectively pushes the posterior to minimize the maximum discrepancy. This is further shown to be equivalent to maximizing margins and minimizing uncertainty of the class predictions in the target domain, a well-established principle in classical (semi-)supervised learning. Empirical results demonstrate that our approach is comparable or superior to the existing methods on several benchmark domain adaptation datasets.
Date of publication 2019
Code Programming Language Python
Comment

Copyright Researcher 2022