Use of the stratified-Petersen estimator in fisheries management: estimating the number of pink salmon (Oncorhynchus gorbuscha) spawners in the Fraser River

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Carl James Schwarz, Carolyn Gail Taylor
Journal/Conference Name Canadian Journal of Fisheries and Aquatic Sciences
Paper Category
Paper Abstract The simple-Petersen estimator is a well-known mark-recapture method to estimate animal abundance. Two key assumptions are equal catchability in both samples and complete mixing of tagged and untagged animals. If these are violated, severe bias can occur. The stratified-Petersen estimator can be used to account for some of the heterogeneity in catchability or mixing. In this paper, we first review recent developments in the stratified-Petersen experiment for fisheries audiences and demonstrate some of the practical problems that can occur that have not been discussed in the theoretical literature. Second, we present a case study to estimate the gross escapement of Fraser River pink salmon (Oncorhynchus gorbuscha) in 1991. The motivation for this study is a discrepancy of over 5 million fish between the estimates as derived by the Pacific Salmon Commission (PSC) (7.5 million fish based on a hydroacoustic method) and the Department of Fisheries and Oceans (DFO), Canada (13.0 million fish based on a mark-recapture method). One hypothesis put forward was that the discrepancy may be due to the use of a pooled-Petersen estimator when there is differential migration over time. The stratified-Petersen model suggests that little of this discrepancy can be explained by differential migration.
Date of publication 2011
Code Programming Language R

Copyright Researcher 2022