Web Image Annotation via Subspace-Sparsity Collaborated Feature Selection

View Researcher II's Other Codes

Disclaimer: “The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).”

Please contact us in case of a broken link from here

Authors Zhigang Ma, Feiping Nie, Yi Yang, Jasper Uijlings, Nicu Sebe
Journal/Conference Name IEEE Transactions on Multimedia
Paper Category
Paper Abstract The number of web images has been explosively growing due to the development of network and storage technology. These images make up a large amount of current multimedia data and are closely related to our daily life. To efficiently browse, retrieve and organize the web images, numerous approaches have been proposed. Since the semantic concepts of the images can be indicated by label information, automatic image annotation becomes one effective technique for image management tasks. Most existing annotation methods use image features that are often noisy and redundant. Hence, feature selection can be exploited for a more precise and compact representation of the images, thus improving the annotation performance. In this paper, we propose a novel feature selection method and apply it to automatic image annotation. There are two appealing properties of our method. First, it can jointly select the most relevant features from all the data points by using a sparsity-based model. Second, it can uncover the shared subspace of original features, which is beneficial for multi-label learning. To solve the objective function of our method, we propose an efficient iterative algorithm. Extensive experiments are performed on large image databases that are collected from the web. The experimental results together with the theoretical analysis have validated the effectiveness of our method for feature selection, thus demonstrating its feasibility of being applied to web image annotation.
Date of publication 2012
Code Programming Language MATLAB
Comment

Copyright Researcher II 2021