Web & Personal Image Annotation by Mining Label Correlation with Relaxed Visual Graph Embedding

View Researcher II's Other Codes

Disclaimer: “The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).”

Please contact us in case of a broken link from here

Authors Yi Yang, Fei Wu, Feiping Nie, Heng Tao Shen, Yueting Zhuang, Alexander G. Hauptmann
Journal/Conference Name IEEE Transactions on Image Processing
Paper Category
Paper Abstract The number of digital images rapidly increases, and it becomes an important challenge to organize these resources effectively. As a way to facilitate image categorization and retrieval, automatic image annotation has received much research attention. Considering that there are a great number of unlabeled images available, it is beneficial to develop an effective mechanism to leverage unlabeled images for large-scale image annotation. Meanwhile, a single image is usually associated with multiple labels, which are inherently correlated to each other. A straightforward method of image annotation is to decompose the problem into multiple independent single-label problems, but this ignores the underlying correlations among different labels. In this paper, we propose a new inductive algorithm for image annotation by integrating label correlation mining and visual similarity mining into a joint framework. We first construct a graph model according to image visual features. A multilabel classifier is then trained by simultaneously uncovering the shared structure common to different labels and the visual graph embedded label prediction matrix for image annotation. We show that the globally optimal solution of the proposed framework can be obtained by performing generalized eigen-decomposition. We apply the proposed framework to both web image annotation and personal album labeling using the NUS-WIDE, MSRA MM 2.0, and Kodak image data sets, and the AUC evaluation metric. Extensive experiments on large-scale image databases collected from the web and personal album show that the proposed algorithm is capable of utilizing both labeled and unlabeled data for image annotation and outperforms other algorithms.
Date of publication 2012
Code Programming Language MATLAB
Comment

Copyright Researcher II 2021