Weighted-Lasso for Structured Network Inference from Time Course Data

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Camille Charbonnier, Julien Chiquet, Christophe Ambroise
Journal/Conference Name Statistical applications in genetics and…
Paper Category
Paper Abstract We present a weighted-LASSO method to infer the parameters of a first-order vector auto-regressive model that describes time course expression data generated by directed gene-to-gene regulation networks. These networks are assumed to own prior internal structures of connectivity which drive the inference method. This prior structure can be either derived from prior biological knowledge or inferred by the method itself. We illustrate the performance of this structure-based penalization both on synthetic data and on two canonical regulatory networks (the yeast cell cycle regulation network and the E. coli S.O.S. DNA repair network).
Date of publication 2010
Code Programming Language R
Comment

Copyright Researcher 2021