Where are the Masks: Instance Segmentation with Image-level Supervision

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Mark Schmidt, Issam H. Laradji, David Vazquez
Journal/Conference Name 30th British Machine Vision Conference 2019, BMVC 2019
Paper Category
Paper Abstract A major obstacle in instance segmentation is that existing methods often need many per-pixel labels in order to be effective. These labels require large human effort and for certain applications, such labels are not readily available. To address this limitation, we propose a novel framework that can effectively train with image-level labels, which are significantly cheaper to acquire. For instance, one can do an internet search for the term "car" and obtain many images where a car is present with minimal effort. Our framework consists of two stages (1) train a classifier to generate pseudo masks for the objects of interest; (2) train a fully supervised Mask R-CNN on these pseudo masks. Our two main contribution are proposing a pipeline that is simple to implement and is amenable to different segmentation methods; and achieves new state-of-the-art results for this problem setup. Our results are based on evaluating our method on PASCAL VOC 2012, a standard dataset for weakly supervised methods, where we demonstrate major performance gains compared to existing methods with respect to mean average precision.
Date of publication 2019
Code Programming Language Python
Comment

Copyright Researcher 2022