Whispered-to-voiced Alaryngeal Speech Conversion with Generative Adversarial Networks

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Download
Authors Jose A. Gonzalez, Santiago Pascual, Antonio Bonafonte, Joan SerrĂ 
Journal/Conference Name IberSPEECH 2018
Paper Category
Paper Abstract Most methods of voice restoration for patients suffering from aphonia either produce whispered or monotone speech. Apart from intelligibility, this type of speech lacks expressiveness and naturalness due to the absence of pitch (whispered speech) or artificial generation of it (monotone speech). Existing techniques to restore prosodic information typically combine a vocoder, which parameterises the speech signal, with machine learning techniques that predict prosodic information. In contrast, this paper describes an end-to-end neural approach for estimating a fully-voiced speech waveform from whispered alaryngeal speech. By adapting our previous work in speech enhancement with generative adversarial networks, we develop a speaker-dependent model to perform whispered-to-voiced speech conversion. Preliminary qualitative results show effectiveness in re-generating voiced speech, with the creation of realistic pitch contours.
Date of publication 2018
Code Programming Language Multiple
Comment

Copyright Researcher 2022