Why Attention? Analyze BiLSTM Deficiency and Its Remedies in the Case of NER

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Download
Authors Peng-Hsuan Li, Wei-Yun Ma, Tsu-Jui Fu
Journal/Conference Name Proceedings of the AAAI Conference on Artificial Intelligence
Paper Category
Paper Abstract BiLSTM has been prevalently used as a core module for NER in a sequence-labeling setup. State-of-the-art approaches use BiLSTM with additional resources such as gazetteers, language-modeling, or multi-task supervision to further improve NER. This paper instead takes a step back and focuses on analyzing problems of BiLSTM itself and how exactly self-attention can bring improvements. We formally show the limitation of (CRF-)BiLSTM in modeling cross-context patterns for each word -- the XOR limitation. Then, we show that two types of simple cross-structures -- self-attention and Cross-BiLSTM -- can effectively remedy the problem. We test the practical impacts of the deficiency on real-world NER datasets, OntoNotes 5.0 and WNUT 2017, with clear and consistent improvements over the baseline, up to 8.7% on some of the multi-token entity mentions. We give in-depth analyses of the improvements across several aspects of NER, especially the identification of multi-token mentions. This study should lay a sound foundation for future improvements on sequence-labeling NER. (Source codes https//github.com/jacobvsdanniel/cross-ner)
Date of publication 2019
Code Programming Language Multiple
Comment

Copyright Researcher 2022