Why gradient clipping accelerates training: A theoretical justification for adaptivity

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Tianxing He, Ali Jadbabaie, Jingzhao Zhang, Suvrit Sra
Journal/Conference Name ICLR 2020 1
Paper Category
Paper Abstract We provide a theoretical explanation for the effectiveness of gradient clipping in training deep neural networks. The key ingredient is a new smoothness condition derived from practical neural network training examples. We observe that gradient smoothness, a concept central to the analysis of first-order optimization algorithms that is often assumed to be a constant, demonstrates significant variability along the training trajectory of deep neural networks. Further, this smoothness positively correlates with the gradient norm, and contrary to standard assumptions in the literature, it can grow with the norm of the gradient. These empirical observations limit the applicability of existing theoretical analyses of algorithms that rely on a fixed bound on smoothness. These observations motivate us to introduce a novel relaxation of gradient smoothness that is weaker than the commonly used Lipschitz smoothness assumption. Under the new condition, we prove that two popular methods, namely, \emph{gradient clipping} and \emph{normalized gradient}, converge arbitrarily faster than gradient descent with fixed stepsize. We further explain why such adaptively scaled gradient methods can accelerate empirical convergence and verify our results empirically in popular neural network training settings.
Date of publication 2019
Code Programming Language Python
Comment

Copyright Researcher 2022