Wide Contextual Residual Network with Active Learning for Remote Sensing Image Classification

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Ying Tu, Jun Li, Zhi He, Haowen Luo, Shengjie Liu
Journal/Conference Name IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium 2018 7
Paper Category
Paper Abstract In this paper, we propose a wide contextual residual network (WCRN) with active learning (AL) for remote sensing image (RSI) classification. Although ResNets have achieved great success in various applications (e.g. RSI classification), its performance is limited by the requirement of abundant labeled samples. As it is very difficult and expensive to obtain class labels in real world, we integrate the proposed WCRN with AL to improve its generalization by using the most informative training samples. Specifically, we first design a wide contextual residual network for RSI classification. We then integrate it with AL to achieve good machine generalization with limited number of training sampling. Experimental results on the University of Pavia and Flevoland datasets demonstrate that the proposed WCRN with AL can significantly reduce the needs of samples.
Date of publication 2018
Code Programming Language Python
Comment

Copyright Researcher 2022