Wide-Slice Residual Networks for Food Recognition

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Niki Martinel, Gian Luca Foresti, Christian Micheloni
Journal/Conference Name Proceedings - 2018 IEEE Winter Conference on Applications of Computer Vision, WACV 2018
Paper Category
Paper Abstract Food diary applications represent a tantalizing market. Such applications, based on image food recognition, opened to new challenges for computer vision and pattern recognition algorithms. Recent works in the field are focusing either on hand-crafted representations or on learning these by exploiting deep neural networks. Despite the success of such a last family of works, these generally exploit off-the shelf deep architectures to classify food dishes. Thus, the architectures are not cast to the specific problem. We believe that better results can be obtained if the deep architecture is defined with respect to an analysis of the food composition. Following such an intuition, this work introduces a new deep scheme that is designed to handle the food structure. Specifically, inspired by the recent success of residual deep network, we exploit such a learning scheme and introduce a slice convolution block to capture the vertical food layers. Outputs of the deep residual blocks are combined with the sliced convolution to produce the classification score for specific food categories. To evaluate our proposed architecture we have conducted experimental results on three benchmark datasets. Results demonstrate that our solution shows better performance with respect to existing approaches (e.g., a top-1 accuracy of 90.27% on the Food-101 challenging dataset).
Date of publication 2016
Code Programming Language Multiple

Copyright Researcher 2022