Working hard to know your neighbor’s margins: Local descriptor learning loss

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Filip Radenovic, Jiri Matas, Anastasiya Mishchuk, Dmytro Mishkin
Journal/Conference Name NeurIPS 2017 12
Paper Category
Paper Abstract We introduce a novel loss for learning local feature descriptors which is inspired by the Lowe's matching criterion for SIFT. We show that the proposed loss that maximizes the distance between the closest positive and closest negative patch in the batch is better than complex regularization methods; it works well for both shallow and deep convolution network architectures. Applying the novel loss to the L2Net CNN architecture results in a compact descriptor -- it has the same dimensionality as SIFT (128) that shows state-of-art performance in wide baseline stereo, patch verification and instance retrieval benchmarks. It is fast, computing a descriptor takes about 1 millisecond on a low-end GPU.
Date of publication 2017
Code Programming Language Multiple

Copyright Researcher 2022