XGBOD: Improving Supervised Outlier Detection with Unsupervised Representation Learning

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Yue Zhao, Maciej K. Hryniewicki
Journal/Conference Name 2018 International Joint Conference on Neural Networks (IJCNN)
Paper Category
Paper Abstract A new semi-supervised ensemble algorithm called XGBOD (Extreme Gradient Boosting Outlier Detection) is proposed, described and demonstrated for the enhanced detection of outliers from normal observations in various practical datasets. The proposed framework combines the strengths of both supervised and unsupervised machine learning methods by creating a hybrid approach that exploits each of their individual performance capabilities in outlier detection. XGBOD uses multiple unsupervised outlier mining algorithms to extract useful representations from the underlying data that augment the predictive capabilities of an embedded supervised classifier on an improved feature space. The novel approach is shown to provide superior performance in comparison to competing individual detectors, the full ensemble and two existing representation learning based algorithms across seven outlier datasets.
Date of publication 2019
Code Programming Language Python
Comment

Copyright Researcher 2022