XNAS: Neural Architecture Search with Expert Advice
View Researcher's Other CodesDisclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).
Please contact us in case of a broken link from here
Authors | Itamar Friedman, Lihi Zelnik-Manor, Niv Nayman, Asaf Noy, Rong Jin, Tal Ridnik |
Journal/Conference Name | NeurIPS 2019 12 |
Paper Category | Artificial Intelligence |
Paper Abstract | This paper introduces a novel optimization method for differential neural architecture search, based on the theory of prediction with expert advice. Its optimization criterion is well fitted for an architecture-selection, i.e., it minimizes the regret incurred by a sub-optimal selection of operations. Unlike previous search relaxations, that require hard pruning of architectures, our method is designed to dynamically wipe out inferior architectures and enhance superior ones. It achieves an optimal worst-case regret bound and suggests the use of multiple learning-rates, based on the amount of information carried by the backward gradients. Experiments show that our algorithm achieves a strong performance over several image classification datasets. Specifically, it obtains an error rate of 1.6% for CIFAR-10, 24% for ImageNet under mobile settings, and achieves state-of-the-art results on three additional datasets. |
Date of publication | 2019 |
Code Programming Language | Python |
Comment |