Y-net: Multi-scale feature aggregation network with wavelet structure similarity loss function for single image dehazing

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Chao-Han Huck Yang, Hao-Hsiang Yang, Yi-Chang James Tsai
Journal/Conference Name ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Paper Category
Paper Abstract Single image dehazing is the ill-posed two-dimensional signal reconstruction problem. Recently, deep convolutional neural networks (CNN) have been successfully used in many computer vision problems. In this paper, we propose a Y-net that is named for its structure. This network reconstructs clear images by aggregating multi-scale features maps. Additionally, we propose a Wavelet Structure SIMilarity (W-SSIM) loss function in the training step. In the proposed loss function, discrete wavelet transforms are applied repeatedly to divide the image into differently sized patches with different frequencies and scales. The proposed loss function is the accumulation of SSIM loss of various patches with respective ratios. Extensive experimental results demonstrate that the proposed Y-net with the W-SSIM loss function restores high-quality clear images and outperforms state-of-the-art algorithms. Code and models are available at https//github.com/dectrfov/Y-net.
Date of publication 2020
Code Programming Language Python
Comment

Copyright Researcher 2022