YASS: Yet Another Spike Sorter

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Espen Hagen, E.J. Chichilnisky, Eleanor Batty, Liam Paninski, Georges A. Goetz, Weichi Yao, Hooshmand Shokri Razaghi, David E. Carlson, Gaute T. Einevoll, Jin Hyung Lee
Journal/Conference Name NeurIPS 2017 12
Paper Category
Paper Abstract Spike sorting is a critical first step in extracting neural signals from large-scale electrophysiological data. This manuscript describes an efficient, reliable pipeline for spike sorting on dense multi-electrode arrays (MEAs), where neural signals appear across many electrodes and spike sorting currently represents a major computational bottleneck. We present several new techniques that make dense MEA spike sorting more robust and scalable. Our pipeline is based on an efficient multi-stage ''triage-then-cluster-then-pursuit'' approach that initially extracts only clean, high-quality waveforms from the electrophysiological time series by temporarily skipping noisy or ''collided'' events (representing two neurons firing synchronously). This is accomplished by developing a neural network detection method followed by efficient outlier triaging. The clean waveforms are then used to infer the set of neural spike waveform templates through nonparametric Bayesian clustering. Our clustering approach adapts a ''coreset'' approach for data reduction and uses efficient inference methods in a Dirichlet process mixture model framework to dramatically improve the scalability and reliability of the entire pipeline. The ''triaged'' waveforms are then finally recovered with matching-pursuit deconvolution techniques. The proposed methods improve on the state-of-the-art in terms of accuracy and stability on both real and biophysically-realistic simulated MEA data. Furthermore, the proposed pipeline is efficient, learning templates and clustering faster than real-time for a 500-electrode dataset, largely on a single CPU core.
Date of publication 2017
Code Programming Language Python
Comment

Copyright Researcher 2022