YOLO-LITE: A Real-Time Object Detection Algorithm Optimized for Non-GPU Computers

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Jonathan Pedoeem, Rachel Huang
Journal/Conference Name 2018 IEEE International Conference on Big Data (Big Data)
Paper Category
Paper Abstract This paper focuses on YOLO-LITE, a real-time object detection model developed to run on portable devices such as a laptop or cellphone lacking a Graphics Processing Unit (GPU). The model was first trained on the PASCAL VOC dataset then on the COCO dataset, achieving a mAP of 33.81% and 12.26% respectively. YOLO-LITE runs at about 21 FPS on a non-GPU computer and 10 FPS after implemented onto a website with only 7 layers and 482 million FLOPS. This speed is 3.8x faster than the fastest state of art model, SSD MobilenetvI. Based on the original object detection algorithm YOLOV2, YOLO- LITE was designed to create a smaller, faster, and more efficient model increasing the accessibility of real-time object detection to a variety of devices.
Date of publication 2018
Code Programming Language Python
Comment

Copyright Researcher 2022